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Abstract

The paper presents a method for efficient text detection
in unconstrained environments, based on image features de-
rived from connected components and on a classification
architecture implementing a focus of attention approach.
The main application motivating the work is container code
detection with the final goal of checking freight trains com-
position. Although the method is strongly influenced by
the application experimental evidence speaks in favour of
its generality: we present results on container codes, car
plates images and on the benchmark dataset ICDAR.

1. Introduction
Automatic text detection in unconstrained environments

plays a central role in many computer vision applications
as a first crucial step towards text recognition. The interest
of the research community is testified by dedicated work-
shops and challenges — see for instance the ICDAR con-
ferences. Focusing to the case of printed text different ap-
proaches may be devised, according to the amount of prior
knowledge on the problem of interest. On one side of the
spectrum we find well established applications, such as Au-
tomatic Licence Plate Recognition (ALPR), where a very
small error rate has to be reached, but one can benefit from
a deep knowledge on characters fonts and appearance. On
the other side we find multi-purpose methods aiming at de-
tecting as much text as possible in real world scenarios, re-
gardless the size of the sign, color and fonts adopted, and
the amount of clutter in the scene.

The work we propose here addresses a well defined prob-
lem that lies in-between the two aforementioned. We focus
on containers code detection to the purpose of monitoring
the entrance of freight trains in stations and to check the
train composition. In this application domain, we do not

have any prior knowledge neither on the amount of clutter
of the scene, nor we make assumptions on the appearance of
the container (that may change in color, size, amount of dirt)
and on the position of the code on the container surface. At
the same time, we have some knowledge on the shape of
the code characters. In our work the latter feature will be
exploited implicitly with an accurate choice of training data
in an example-based approach. The major requirement of
the application is to keep the computational cost low, since
container detection is only the first step of a more complex
monitoring system.

There have been very few attempts of addressing con-
tainer code detection and recognition (see, for instance,
[4, 5, 15]). For what concerns, more in general, printed
character detection and recognition, an analysis of the avail-
able literature may be started from the proceedings of ded-
icated conferences [8]. Much attention is devoted to detec-
tion problem, since once a character has been properly lo-
calized, many consolidated pattern recognition techniques
are available. The highlight from ICDAR benchmarks is
[2] that proposes an Adaboost apprach based on a set of
features that are not reported in the work (therefore the ap-
proach is not repetible).

The method we propose is based on segmenting the im-
age in Connected Components (CC) and classifying them
in text and not-text with a classification architecture based
on a focus-of-attention strategy that limits the amount of
computation. Notice that, up to know, no prior information
available from the system (such has the relative distance be-
tween container and camera) has been applied. Thus the
method is rather general and it has been applied, not only
to a dataset of container codes images (obtaining an equal
error rate – e.e.r.– below 2%) but also to car plates images
(e.e.r = 1.2%). Real world images from the ICDAR DB
have also been segmented with success.



2. The proposed method

Following a well established pipeline [16], the proposed
method has been organized in three main stages: (1) image
segmentation, (2) connected components description, (3)
classification. As for image segmentation we adopt a simple
yet effective local approach, the NiBlack method [9], while
for what concerns connected components descriptions we
rely on a selection of features that capture different appear-
ance peculiarities. The final classification step is performed
with an architecture of classifiers that considers a trade-off
between accuracy and computational issues. The remainder
of this section details the devised method.

2.1. Image segmentation

The first step of CC-based approaches is image segmen-
tation used to extract connected components from the anal-
ysed image. In spite of the enormous amount of work
dedicated to this topic, image segmentation can be still re-
garded as an open problem, due to objects complexity, arti-
facts due to illumination, noise caused by textures and low
contrast regions. Here we rely on the fact that no matter
how complex the scene is, there is usually a rather strong
contrast between a foreground printed text and the back-
ground. To address our problem, with an eye on system
requirements we focus on methods that are computationally
efficient. Our current image segmentation module imple-
ments the NiBlack method that, adopting a local approach,
is faster than other methods well established in the literature
(e.g., fuzzy C-means [8], or mean-shift [3]). Also it allows
us to capture local changes between foreground and back-
ground and it is less sensitive to non-uniform illumination.
As a brief reminder of the Niblack method, we recall that
a pixel is classified according to the following thresholding
rule:

Niblack(i, j) =

 1 if I(i, j) > T+(i, j)
−1 if I(i, j) < T−(i, j)
0 otherwise

where T∓(i, j) = µ(i, j, Wm) ∓ kσ(i, j, Ws) k is a con-
stant value and Wm Ws is the patch size where mean and
variance are computed (1/5 of image size in our case). The
major strength of the Niblack approach is its simplicity and
the fact that the algorithm is not too sensitive to parameter
choice. For these reasons a number of variants have been
recently proposed — see for instance [16, 13].

2.2. CC descriptions

Once a set of connected components has been localized
within the image, an appropriate way to describe their ap-
pearance has to be devised. This description should be
evocative of the problem of interest, i.e., it should produce

a good discrimination between text characters and other ob-
jects. Our work relies on descriptions of the single charac-
ter (as opposed to other approaches that first group adjacent
features and then describe such groups [8]).

To this purpose we use a set of 20 features, most of them
available from the literature. The list of adopted features is
reported in Table 1. The table contains an appropriate cita-
tions, when available. The other features may be described
as follows:

• Homogeneity: σ2(CC)
σ2(BB) (BB stands for Bounding

Box). This description represents the degree of color
(or grey level) homogeneity within the character re-
gion. A variant uses a wider region than BB to deal
with CC ∼ BB (as in the case of the character I).

• Direction variations: the direction variations along
the CC contour is computed. This measures the reg-
ularity of the character.

• Correlation:
∑

(r,c)∈CC I(r, c) 6= I(r − 1, c) and∑
(r,c)∈CC I(r, c) 6= I(r, c − 1). The two values are

combined in different ways giving raise to 3 versions:
(1): average value; (2): min value; (3): comparison
between adjacent lines on a 8-connected component.
This description evaluates the degree of correlation be-
tween a scanline (row or column) and the adjacent one.

• Stroke width: this description computes the average
stroke and its standard deviation; average is normal-
ized with the connected component height. It captures
the stroke stability typical of printed characters.

Also, we consider a measure of contour roughness [16] that
implements a morphological closure instead than an open-
ing. This makes the measure more stable when dealing with
small characters.

2.3. Classification architecture

The classification architecture that we consider is based
on Regularized Least Squares (RLS) — other regularized
algorithms could be easily adopted, with some computa-
tional gain on the training phase [6]. In the classifica-
tion phase we train a classifier on a training set of positive
(text connected components) and negative (non text) exam-
ples described according to the previously described CC-
features. Since the CC-features are heterogeneous the issue
on how to combine such features needs to be addressed.

A first approach is to build a global feature vector af-
ter all features are normalized to a common range of values
(e.g., [0,1]). The major disadvantage with this approach is
computational: since we deal with an object detection prob-
lem we aim at minimizing the number of evaluations for
each analysed image region.



feature reference
Aspect ratio [16]
Occupy ratio [16]
Edge contrast [16]
Homogeneity see text
Homogeneity (variant) see text
Edge Symmetry [7]
Run length [1]
Direction variations see text
Contour roughness (open) [16]
Contour roughness (close) see text
CC Holes [16]
Perimeter length [14]
Correlation ver. 1, 2, 3 see text
Stroke width see text
Zernike moments [14]
Generalized Fourier Descriptor [14]
Normalized central moments [14]
Hu moments [14]

Table 1. List of the 20 descriptions adopted. The reader is referred
to the cited works or to the text.

On this respect a possible attractive alternative is to adopt
a focus of attention approach that allows for a fast elimina-
tion of negative data. The idea of such architectures has
been widely adopted for object detection problems, to deal
with the strong unbalance between positives and negatives
in a given image. This issue has been debated, for instance,
in [11] where a cascade of classifiers is implemented. The
underlying idea is that, with a careful composition of inde-
pendent weak classifiers, one can achieve very good overall
performances. Each classifier is trained so that it will not be
likely to miss positive occurrences, to the price of increas-
ing the number of false positives. The output c(x) of each
classifier is modified as follows:

g(x) =
{

1 c(x) ≥ τ
−1 otherwise (1)

where the threshold τ is set so to obtain a given hit rate.
The overall performance of the independent classifiers is
obtained as H =

∏K
i=1 hi and F =

∏K
i=1 fi where hi is

the hit rate and fi is the false positive rate for each weak
classifier i. Notice that if we set the minimum hit rate to
99.5% and the maximun false positive rate to 50%, these
modest targets allow us to achieve good performances with
the global classifier, for instance, assuming a cascading of
10 weak classifiers, we will get H = 0.99510 ∼ 0.9 and
F = 0.510 ∼ 3× 10−5.

The cascade is built by first splitting the available fea-
tures in different groups. Each group is used to train a clas-
sifier and to tune it to the required performances. At run
time, each test element is evaluated with the first classifier:
if the classifier returns a negative output, the element is dis-

carded, otherwise it is used as an input for the second classi-
fier. A positive output is associated to the test element only
if it passes all classifiers. The required precision may be
estimated with a cross-validation procedure, selecting the
threshold that guarantees the best trade-off between a high
hit rate on each layer and a good overall false positives rate.

For what concerns the choice on how to combine fea-
tures in a cascade, for computational reasons, we choose
small feature vectors per each layer. The simplest choice is
to associate one feature to each layer. In this case we need to
find an ordering for the features, from the most to the least
informative for the problem at hand — this can be done by
means of feature selection. This choice leads to a single-
feature cascade. We also combine features considering at
most two features at the time. Again, to choose significant
feature pairs we apply a feature selection method on all pos-
sible feature pairs and single features. This choice leads to
a at-most-2-features cascade.

In this paper we apply a recently proposed feature selec-
tion technique: Kernel Class Separability [12]. The method
performs feature selection extending a rather simple linear
feature selection method (class separability) to deal with
non linearly separable classes, by means of an appropri-
ate mapping in a kernel space. The criterion is based on
J0 = tr(SB)

tr(SW ) where the within-class scatter matrix SW and
the between-class scatter matrix SB are computed in the
feature space induced by a kernel K. To maintain the nu-
merical stability of the criterion, the authors use a lower
bound for J0: Jl = tr(SB). Then, instead than using it
straightforwardly they apply a maximal class separability
over the kernel parameter set θ, as a way to perform di-
rectly parameter tuning: J(θ∗) = maxθ∈Θ[J(θ)]. If the se-
lected kernel function has a first and second-degree deriva-
tive (as in the case of the Gaussian RBF kernel adopted in
our work), then a gradient-based optimization technique can
be used to solve the maximization problem.

3. Experimental analysis
3.1. The datasets

In the experimental evaluation phase we rely on two im-
age datasets: a car plate image set (121 images, 512 ×
256) and a container code image set (100 images, 1200
× 1600), all acquired under natural daylight illumination
and variable weather conditions. All images have been seg-
mented with the NiBlack algorithm and the obtained con-
nected components have been manually labelled in text and
non text elements. A first dataset, 500+500 training data
and 300+20460 test data, is built from the car plates images
(the reason for such an unbalanced dataset is due to the in-
trinsic nature of object detection: the number of positive
occurrences are much smaller than negative ones). Most of
the method assessment has been carried out on this dataset.



Feature Linear RLS Gaussian RLS
Aspect ratio 0.87 0.89
Occupy ratio 0.51 0.64
Edge contrast 0.75 0.82
Homogeneity 0.45 0.82

Homogeneity (variant) 0.44 0.78
Edge symmetry 0.54 0.60

Run length 0.73 0.89
Direction variations 0.51 0.71

Contour roughness (open) 0.60 0.62
Contour roughness (close) 0.63 0.74

CC Holes 0.55 0.62
Perimeter length 0.70 0.72

Correlation 1 0.75 0.83
Correlation 2 0.55 0.55
Correlation 3 0.60 0.69
Stroke width 0.75 0.85

Zernike moments 0.90 0.96
Generalized Fourier Descriptor 0.89 0.93
Normalized central moments 0.85 0.91

Hu moments 0.61 0.85

Table 2. Cross-validation performances obtained with single fea-
ture classifiers. The results show that a Gaussian kernel is more
appropriate for the problem of interest. They also show a high
degree of variability on the performance of the various features.

To deal with the text localization problem on the containers
dataset we built a training set combining container and car
plates data, while the test set is made of CC from containers
images. The mixed dataset is composed of 500+500 train-
ing entries and 970+40000 test entries. To assess the whole
object (text) detection process we use a set of containers im-
ages and a separate test set of unconstrained images used as
a benchmark in the literature: the ICDAR dataset [8]. We
conclude with a note on segmentation performances: we
achieve 85% correct characters segmentation on car images
and 94% on container images. Lower resolution images are
more complex, as adjacent characters tend to merge.

3.2. Classification experiments

The classifiers implement a RLS approach. As for the
choice of the kernel function we are currently adopting a
Gaussian kernel. A preliminary analysis of the discrimina-
tion power of single features (Table 2) allowed us to obtain
a simple comparison between linear and Gaussian classi-
fiers, with a clear superiority of the latter. We start off with
the car plates dataset and first evaluate the performance of
the unique classifier trained on a feature vector based on
all features. Then, before we move on to build the clas-
sifiers cascade a Spearman correlation test was run among
all features pairs, computed on the positive examples. The
results obtained are always below 0.3, showing a small cor-
relation between the various features adopted and thus justi-
fying the use of a cascading architecture. We built a single-

Figure 1. Comparison between the ROC curce of the unique clas-
sifier and performances of the two types of cascades evaluated (see
text).

features cascade, selecting the most appropriate minimum
hit rate for each classifier according to the performances
of the single classifiers (evaluated with a Leave-One-Out
(LOO) cross validation). The selected minumum hit rate is
99.5%. With a cascade based on single feature classifiers
we obtain a hit rate of 94% with 1.8% false positives.

Finally, we run the feature selection procedure to build
a cascade of at-most-2-features classifiers. The procedure
produces 6 pairs : (homogeneity (variant), correlation 2),
(perimeter length, normalized central moments), (contour
roughness (close), correlation 1), (stroke width, correlation
3), (occupy ratio, Hu moments), (contour roughness (open),
CC holes). The other features form single-features layers.
Again with LOO-cross validation we select the minimum
hit rate to be reached by each classifier. The results obtained
are a 98% hit rate with a 3.1% false positives rate.

Figure 1 reports a Receiver Operating Characteristic
(ROC) curve of the performance obtained with the unique
classifier. The curve is built varying the threshold τ applied
to the output of the RLS. It also shows the results obtained
with the two types of cascade architectures. The at-most-
2-features cascade performs better than the single feature
cascade. Among the three choices, the unique classifier
performs best, suggesting that the non-linear combination
of features due to the kernel produces a richer and more in-
formative description. At the same time, the adoption of a
cascading mechanism makes the detection process on one
image 8 times faster. Then, if computational issues are cru-
cial we may adopt at-most-2-features cascade. Figs. 2 and 3
show segmentation results at different layers of the cascade.
Correct text detection is above 90%, most errors are due to
segmentation. The computational gain is due to the fact that
image regions not painted in green will be discarded from
further computations.

An alternative choice to boost correct detection perfor-



Figure 2. Detection results at different layers of the cascade. De-
tected text is painted in green. The final layer contains 7 false pos-
itives over 449 and 1 false negative over 22 correctly segmented
characters.

Figure 3. Detection results (ICDAR db) at different layers of the
cascade. Detected text is painted in green. The final layer contains
4 false positives over 314 and 2 false negative over 30 correctly
segmented characters.

mance while keeping computational cost low is to adopt a
combined solution between cascades and monolithic classi-
fiers considers, first, a few fast layers of a cascade, to dis-
card “easy” negative examples (that are the majority), then
a monolithic classifier trained on remaining features and
equipped with a non-linear kernel. We implement a 2 layers
cascade with the features aspect ratio and edge strength (the
first two layers in the at-most-2-features cascade). Then, for
those CC that pass the 2 layers test a unique classifier of the
remaining features is applied. This combination allows us
to reduce the amount of computation (only 20-30% of CC
are evaluated with the unique classifier, making text detec-
tion four times faster). This combined procedure leads to
a good compromise between performance (reported in Fig.
4) and speed (processing is 4 times faster).

The results are confirmed on the containers dataset. Fig-
ure 5 reports a comparison between the unique classifier, the

Figure 4. Comparison between the unique classifier ROC curve
and the one of the combined solution (2 layers + monolithic classi-
fier).The decrease in performance is very limited while processing
is 4 times faster

Figure 5. Compoarison on the containers dataset. Again the com-
bined solution appears to be a very good compromise between
speed and correct classification rates.

Figure 6. Text detection on low quality container images. All con-
tainers codes are correcly detected. Big characters are not detected
since the focus of the application is on container codes and image
segmentation parameters were tuned on their size.

combinination of a 2 layers cascade followed by the unique
classifier, and the at-most-2-features cascade.

We conclude this section remarking that one of the main
challenges of localizing container code is due to acquisition
conditions that are often poor. This can be either due to



Figure 7. Noise and blur (typical of container codes images)
strongly affects segmentation results. From top left (clockwise):
original image, niblack, mean-shift, c-means.

weather conditions, dirt on the container, low contrast be-
tween text and background, distance between camera and
container. Figure 6 reports correct text detection, obtained
with the combined architecture, on very difficult images ac-
quired from a distance in bad weather conditions.

4. Discussion

The paper reported a CC approach to text detection that
implements a classification architecture based on focus of
attention. We achieve satisfactory detection performances
with a limited computational cost. The devised method
is quite general (it has been applied with success to car
plates, container codes, and to a generic benchmark dataset
of printed characters) even though the main application mo-
tivating our work is container code localization.

An inspection on the weaknesses of our approach shows
how the image segmentation module is very sensitive to im-
age noise and blur: most misses are caused by the failure
of this pre-processing stage. Figure 7 shows a low qual-
ity container code image and makes apparent the weakness
of NiBlack (top right). It also shows the difficulty of the
data we are dealing with, since other popular methods ob-
tain unsatisfactory results — mean shift (bottom right) over-
segments the characters, while some characters are missed
with c-means (bottom left). Future work will be devoted to
devise an alternative fast image segmentation method, we
are currently exploring the possible use of [10].
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