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Outline of the presentation

• User requirements on 2D train scanning

• Technical issues and results:
– Reconstruction of the train profile
– U-Code reading

• Demo of the batch pipeline

• Current work beyond the VIT project
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Main user requirements

• A feasibility study on
– Reconstruction of the train profile (sequence of

empty and filled wagons)

– Generate a recording of the sequence of
containers and their size

– Reconstruction of the train can be done either
whilst the train is coming to a stop (initial
speed of 60 KM/h) or when it is stanting at the
station
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The feasibility study

• State of the art analysis
• Design of the architecture and tech specs
• Development and testing of the main

modules
– Laboratory tests: Months 9-12
– Tests on Vado Ligure data: Months 13-18

• The final prototype is a batch sw module
implementing the best choices with
respect to current hw layout:
– It processes a previously recorded video
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Technical specifications

• The video-camera choice

– Video-surveillance quality
– Mega-pixel quality
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Technical specifications

• One camera VS N cameras
– Limit the amount of intervention on the plant

• Thus, the final prototype is based on the
use of a single mega-pixel video-camera

• To comply to real-time computation (after
an engineering phase)
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Functional dependencies

video

Train profile

Code verification

Wagon1:
20ft,…

WAGON1:
U1234567890
U1234567890
U1234567890
u1234567890

U123456789
U123456789
U123456789

…

Anticipated
Load 
plan
…
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Train profile

• A profile is built while the train is entering
or leaving the station
1. A panoramic image of the whole train is built

• This allows us to automatically discard parts of the
plant (turrets,…)

2. Rectangle detection and gap detection is
applied to the panorama for
• Localization of the wagons
• Identification of empty slots
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How to build a panorama
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How to build a panorama

• Simple models to be able to cope with real-time
processing
– Background subtraction with a codebook model
– Feature (corner) selection and tracking with a prior on

the train motion direction (horizontal)
– Image stitching
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How to detect rectangles

• Line detection with classical computer
vision methods:
– Canny edge detection,
– Hough transform

˚ Filter out “not horizontal” lines
• Use a prior on containers size to group 4-

plets of lines that could be containers
edges

˚ Discard the ones intersecting background
zones
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How to detect rectangles
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How to detect rectangles

The procedure also allows us to associate information on the containers
length
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How to detect gaps

• Gaps are located by computing the integral
of pixels belonging to the foreground with
respect to the ground plane
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A train at a glance
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Experiments months 16-18

Camera Type Containers error % (average) Gaps error % (average) 
MEGA-far 22% 8.4% 
MEGA-close (month 17) 20.5% 3% 
MEGA-close (month 18) 3.9% 0% 

 

Results obtained with the camera in the final
configuration.

Video sequences acquired in Vado Ligure;
they include various weather and illumination
conditions.
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Ownership code identification

• For each video frame:
– Character detection
– Code verification

• For groups of adjacent video frames:
– Output coherence
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How to detect codes

• Text detection:
– Segment the input frame into connected

components (CC) with the Niblack algorithm
– Discard the CCs too small or big
– For each CC:

• Represent it by means of an appropriate feature
vector (area, perimeter, elongation, avg curvature,
moments, …)

• Classify the feature vector into text/non-text with a
classification cascade (learning from examples)
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Text detection: quantitative results

• Dataset for lab testing:
– Training set acquired by the RTDs in various

conditions
– Test set from the SMEs
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Code verification

• Code reading:
– Multi-class classification:

• RBF SVM classifier with a one-vs-all scheme
• Model selection performed for each classifier with cross-

validation

– Geometry and vicinity are used to group character into
strings

• Code verification:
– We compare each code read with the expected code

(Needleman-Wunsch comparison)
– A tolerance to the number of correct chars is added with

a remarkable improvement
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Code verification: quantitative results

• Experiments on the
choice of a tolerance

• Tests at months 16-18:
– manually annotated
– False positives estimated

simulating 10.000 random
wrong codes

Tolerance False negatives False positives  
0 2.91E-001 0.00E+000 
1 4.17E-002 0.00E+000 
2 3.59E-003 0.00E+000 
3 2.15E-004 0.00E+000 
4 5.00E-006 3.90E-005 
5 0.00E+000 9.12E-002 

 

4.3%0.01%Month 18

10.2%0.042%Month 16-17

FALSE
NEGATIVE

FALSE
POSITIVE

DATA (Vado L.)

At the beginning of month 18 the
camera was
tuned and sharpened
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The quality of the signal

  

  

 

BAD GOOD
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The full pipeline at work
….
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Main user requirements

• A feasibility study on
Reconstruction of the train profile (sequence of

empty and filled wagons)

Generate a recording of the sequence of
containers and their size

Reconstruction of the train can be done either
whilst the train is coming to a stop (initial
speed of 60 KM/h) or when it is standing at the
station
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What now

• At month 18 the software was working as a batch
module on a video input

• The module was already compatible with the
video-surveillance software suite developed in WP5

• Following the SMEs positive comments to the
result of the feasibility study we are currently
integrating it to the video-surveillance server

• Ongoing laboratory tests :
– Feature extraction and tracking
– Container code detection


