
1

WP4 - 2D train scanning

Francesca Odone
DISI, Università degli Studi di Genova
odone@disi.unige.it

http://slipguru.disi.unige.it/

2

The WP4 team

• DISI
– Paolo Albini
– Francesca Odone
– Alessandro Verri
– Luca Zini

• IMAVIS
– Augusto Destrero
– Alberto Lovato

• DUNDEE
– Spela Ivekovic
– Manuel Trucco

3

Outline of the presentation

• User requirements on 2D train scanning

• Technical issues and results:
– Reconstruction of the train profile
– U-Code reading

• Demo of the batch pipeline

• Current work beyond the VIT project

4

Main user requirements

• A feasibility study on
– Reconstruction of the train profile (sequence of

empty and filled wagons)

– Generate a recording of the sequence of
containers and their size

– Reconstruction of the train can be done either
whilst the train is coming to a stop (initial
speed of 60 KM/h) or when it is stanting at the
station

5

The feasibility study

• State of the art analysis
• Design of the architecture and tech specs
• Development and testing of the main

modules
– Laboratory tests: Months 9-12
– Tests on Vado Ligure data: Months 13-18

• The final prototype is a batch sw module
implementing the best choices with
respect to current hw layout:
– It processes a previously recorded video

6

Technical specifications

• The video-camera choice

– Video-surveillance quality
– Mega-pixel quality

7

Technical specifications

• One camera VS N cameras
– Limit the amount of intervention on the plant

• Thus, the final prototype is based on the
use of a single mega-pixel video-camera

• To comply to real-time computation (after
an engineering phase)

8

Functional dependencies

video

Train profile

Code verification

Wagon1:
20ft,…

WAGON1:
U1234567890
U1234567890
U1234567890
u1234567890

U123456789
U123456789
U123456789

…

Anticipated
Load
plan
…

9

Train profile

• A profile is built while the train is entering
or leaving the station
1. A panoramic image of the whole train is built

• This allows us to automatically discard parts of the
plant (turrets,…)

2. Rectangle detection and gap detection is
applied to the panorama for
• Localization of the wagons
• Identification of empty slots

10

How to build a panorama

11

How to build a panorama

• Simple models to be able to cope with real-time
processing
– Background subtraction with a codebook model
– Feature (corner) selection and tracking with a prior on

the train motion direction (horizontal)
– Image stitching

12

How to detect rectangles

• Line detection with classical computer
vision methods:
– Canny edge detection,
– Hough transform

˚ Filter out “not horizontal” lines
• Use a prior on containers size to group 4-

plets of lines that could be containers
edges

˚ Discard the ones intersecting background
zones

13

How to detect rectangles

14

How to detect rectangles

The procedure also allows us to associate information on the containers
length

15

How to detect gaps

• Gaps are located by computing the integral
of pixels belonging to the foreground with
respect to the ground plane

16

A train at a glance

17

Experiments months 16-18

Camera Type Containers error % (average) Gaps error % (average)
MEGA-far 22% 8.4%
MEGA-close (month 17) 20.5% 3%
MEGA-close (month 18) 3.9% 0%

Results obtained with the camera in the final
configuration.

Video sequences acquired in Vado Ligure;
they include various weather and illumination
conditions.

18

Ownership code identification

• For each video frame:
– Character detection
– Code verification

• For groups of adjacent video frames:
– Output coherence

19

How to detect codes

• Text detection:
– Segment the input frame into connected

components (CC) with the Niblack algorithm
– Discard the CCs too small or big
– For each CC:

• Represent it by means of an appropriate feature
vector (area, perimeter, elongation, avg curvature,
moments, …)

• Classify the feature vector into text/non-text with a
classification cascade (learning from examples)

20

Text detection: quantitative results

• Dataset for lab testing:
– Training set acquired by the RTDs in various

conditions
– Test set from the SMEs

21

Code verification

• Code reading:
– Multi-class classification:

• RBF SVM classifier with a one-vs-all scheme
• Model selection performed for each classifier with cross-

validation

– Geometry and vicinity are used to group character into
strings

• Code verification:
– We compare each code read with the expected code

(Needleman-Wunsch comparison)
– A tolerance to the number of correct chars is added with

a remarkable improvement

22

Code verification: quantitative results

• Experiments on the
choice of a tolerance

• Tests at months 16-18:
– manually annotated
– False positives estimated

simulating 10.000 random
wrong codes

Tolerance False negatives False positives
0 2.91E-001 0.00E+000
1 4.17E-002 0.00E+000
2 3.59E-003 0.00E+000
3 2.15E-004 0.00E+000
4 5.00E-006 3.90E-005
5 0.00E+000 9.12E-002

4.3%0.01%Month 18

10.2%0.042%Month 16-17

FALSE
NEGATIVE

FALSE
POSITIVE

DATA (Vado L.)

At the beginning of month 18 the
camera was
tuned and sharpened

23

The quality of the signal

BAD GOOD

24

The full pipeline at work
….

25

Main user requirements

• A feasibility study on
Reconstruction of the train profile (sequence of

empty and filled wagons)

Generate a recording of the sequence of
containers and their size

Reconstruction of the train can be done either
whilst the train is coming to a stop (initial
speed of 60 KM/h) or when it is standing at the
station

26

What now

• At month 18 the software was working as a batch
module on a video input

• The module was already compatible with the
video-surveillance software suite developed in WP5

• Following the SMEs positive comments to the
result of the feasibility study we are currently
integrating it to the video-surveillance server

• Ongoing laboratory tests :
– Feature extraction and tracking
– Container code detection

